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Abstract-For a thin thermometer having no radial temperature gradient but showing a certain thermal 
inertia the displacement of mean temperature related to the mean temperature of gas is determined to- 
gether with the temperature record fundamental and higher harmonics in the case when both the measured 
temperature and the heat-transfer coefftcient are varying periodically at the same frequency having dif- 
ferent phase displacements. The effect of thermal conduction along the thermometer is taken into con- 

sideration. 

NOMENCLATURE 

temperature variation amplitude ; 
1 2ci __=-. 

70 Rep' 
specific heat of metal ; 

thermal diffusivity, = L; 
C.P 

length ; 
0 _* 
4 
radius of sensing element ; 
temperature ; 
distance along sensing element from the 
centre of span. 

Greek symbols 
phase angle ; 
heat-transfer coefficient ; 
thermal conductivity ; 
density of metal ; 
time ; 

RCP time constant, = -=--; 
Za 

angular velocity. 

1. INTRODUCTION 

THE MEASUREMEW of rapidly varying gas tem- 
peratures by means of contact thermometers 

under the condition of simultaneous periodical 
variations of velocity of flow, density, viscosity 
and thermal conduction of gas, hence, under 
the conditions involving a variable heat-transfer 
coefficient has got a particular importance due 
to the very intensive actual research work on 
the transient processes of combustion and gas 
dynamics. In measurement practice, irrespec- 
tive of typical errors encountered in the measure- 
ment of rapidly varying gas temperatures, some 
particular errors appear. The first attempt to 
determine those errors has been made by 
Gordov [14]. Considering the variation of 
temperature along the radius of a cylindrical 
sensing element and neglecting the thermal 
conduction along the element, Gordov has 
proved that in a medium in which both the 
temperature and heat transfer are harmonically 
variable, the measured mean temperature differs 
from the medium mean temperature, and the 
sensing element temperature pulsation curve 
consists of two component harmonics with 
different amplitudes and phase displacements, 
so that the curve does not represent the gas 
temperature pulsation. From Gordov’s formula 
defining the magnitude of displacement of 
the temperature mean level one can conclude 
that this displacement maximum value as 
related to the temperature variation amplitude 
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amounts to 0.25 relative pulsation of the heat- 
transfer coefficient. The maximum displacement 
occurs at the zero phase angle between the 
temperature pulsation and that of the heat- 
transfer coefticient; it disappears at the phase 
angle equal to 42. 

However, Kaganov and Rozenshtok [7] have 
proved that the results obtained by Gordov 
do not meet the boundary conditions due to 
errors in determining the integration constants. 
Applying the small parameter method to the 
problem of heat exchange with a variable 
heat-transfer coefficient, as discussed by Gordov, 
they have shown that in the case under con- 
sideration all harmonics at frequencies equal 
to the whole multiples of the fundamental one 
should appear in the temperature record, and 
that the maximum value of the mean tempera- 
ture displacement should be equal to the gas 
temperature pulsation amplitude multiplied by 
a relative half amplitude of the heat-transfer 
coefhcient pulsation. This value appears when- 
ever the change of the heat-transfer coefficient 
has a certain phase lead in advance of the 
temperature change. Considering the numerous 
contradictions in the determined mean value 
and a very complex form of the results obtained 
up to now which neither permit the determina- 
tion of higher harmonics nor fundamental 
component of the temperature fluctuation of 
the sensing element being of particular interest 
for the measurement of rapidly varying tem- 
peratures, the problem is to be revised on the 
base of some other assumptions. 

Usually, a measurement of rapidly varying 
gas temperatures is performed by means of 
thin wire thermometers or thermocouples as 
represented in Fig. 1. The radial temperature 
gradient can be neglected in those thermometers 
due to the very short time of thermal diffusion 
in this direction z = R’/k (where k is the thermal 
diffusivity, R being the sensing element radius). 
However, the thermal conduction along the 
sensing element to the supporting electrodes 
cannot be neglected. Generally, such a sensing 
element must be very short because of tensile 

stress (proportional to the length-diameter 
ratio). So, the starting point to determine the 
errors in measuring varying temperatures at 
a variable heat-transfer coefficient should be 
an analysis of behaviour of a thin thermometer 

Thermocouple junction Resistance wire 

Supporting 
electrodes 

Electrode Electrode 
metal A metal B 

FIG. 1. Thermometers used for measurement of rapidly 
varying temperatures. 

taking into consideration the effect of sensing 
element supports. This is the problem dis- 
cussed in this paper. 

2. DIFFERENTIAL EQUATION 

The equation of temperature variations for 
a thin thermometer may be written as follows : 

at -=,$+ 
aT (1) 

where 

t, 

where 

a(r), 
c, 
R, 
P. 

temperature of the thermometer wire in 
the point defined by the coordinate x ; 
time ; 
thermal diffusivity ; 
gas temperature ; 
time constant defined by 

1 242) ___ = -* 
ro(r) cpR ’ 

heat-transfer coefficient ; 
specific heat of metal ; 
radius of sensing element ; 
density of metal. 
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A general solution of the equation (1) may 
be obtained with the method of separation of 
variables. In this way we obtain a complicated 
result suitable for numerical treatment only, 
even for the simple functions l/z,(r) and 

t,(r). 
Considering the foregoing to obtain more 

general conclusions some separate simplified 
problems must be discussed, i.e. responses of a 
thermometer of infinite length followed by 
the estimation of the effect of the sensing element 
supports on the measurement results. 

3. RESPONSE OF AN INFINITELY LONG 

THERMOMETER 

If the effect of supports is neglected, the equa- 
tion (1) can be written as follows: 

; + u(z) (t - t,) = 0 

where 

1 
a(r) = -. 

r&r) 

The solution is to be discussed at 

a(z) = a, + Au sin or 

t,(z) = t, + A sin (or + 

for the initial condition t(O) = t,. 

94 (3) 

In that case the general solution of the equa- 
tion (2) is as follows: 

t = eVF[t, + iu(T) tg(z)eFdz] (4) 
0 

where 

F(z) = ju(r)dt. 
0 

Unfortunately, the integral written in the 
equation (4) cannot be expressed in a finite 
form for the variations of both the heat-transfer 
coefficient and the gas temperature defined in 
the relations (3). Attempts have been made to 
solve this integral in a form of a series by 
series expansion of the term e’. However, at 

the very beginning of expansion, the first terms 
of the obtained solution have appeared as 
very complex ones, moreover, the series has 
been found not sufficiently convergent to make 
the solution method useful. Therefore, two other 
methods have been applied to obtain the 
approximate solutions : a method of selection of 
functions (3), to get the solution of the integral 
(4) as simple as possible, and the method of 
successive approximations based on the assump- 
tion that the heat-transfer coefficient variations 
are small. 

3.1. Method of selection of heat-transfer coef$cient 
variations 

The solution of the integral written in the 
equation (4) appears relatively simple assuming 
that 

u(r) = a, + 
do sin wz 

1 - dcoswr (5) 

and that the rest of the conditions remain 
unchanged. That simplicity of the solution is 
due to the fact that in the right hand side of the 
expression (5) the numerator is a derivative of 
the denominator, so that the term 8 can be 
expressed simply as 

eo,r 1 - dcoswr 

l-d . 

Since the true variations of the heat-transfer 
coefficient involving the variations of a are 
never exactly harmonic, the foregoing assump- 
tion of non-exactly sinusoidal variations is 
fully justified. In order to prevent excessive 
departures from the sinusoidal variations of 
heat-transfer coefficient it is necessary to satisfy 
the condition of d 4 1. On the other hand the 
heat-transfer coefficient cannot be negative, 
then do/a, -C 1. Both conditions mentioned 
above represent a limitation of the applications 
of the method: viz. for a thermometer with a 
small thermal inertia (o/u z 1) the solution 
may be obtained merely for very small pulsa- 
tions of a. On the contrary, for a thermometer 
with a significant thermal inertia the method in 
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question enables us to analyse the effect of con- 
siderable variations of the heat-transfer coef- 
ficient on the thermometer response. For the 
accepted assumptions, after having neglected 
the expressions disappearing against time, and 
the terms of order d2 the solution of the equation 
(2) takes the following form 

t = t, - $4dn 4(1 : nZ) sin (cp - arctan n) 

+A 
J(l : d) 

sin (wz + cp - arctan n) 

+ Adn h J(n" + $0” + b) sin 

(1 + n”)(l f 4n2) 
2wz 

, 

. (6) 

In this solution n denotes the relation 

ala,, i.e. a value equal to the product of 
frequency and the sensing time constant of the 
element for average conditions of heat transfer. 

3.2. Method of successive approximations 
In order to obtain the results valid within a 

wider measuring range, in particular applicable 
to small inertia thermometers, the equation (2) 
is solved additionally with the aid of the method 
of successive approximations. 

Equation (2) can be written as follows : 

z + a,t = (a, + Aa sin wr) te - Aa t sin OZ.(~) 

When Aa is small, the solution of the equation 
(7) without the last term on the r.h.s. can be 
accepted as the first approximation. Let us 
denote this solution as t,. The next successive 
approximation t2 is obtained by forming a 
sum of t, and the solution of the following 
equation 

+ + amtO = - Aa t, sin oz. (8) 

Further approximations are obtained in an 
analogous way 

2 + amtO = - Aat, sin wz 

t, = t, + t,,, etc. (9) 

The solution of equation (2) after the second 
approximation obtained with the aid of the 
method described above takes the following 
form : 

t,=t,-+A& 
n 

anr J(1 + n2) 
sin(cp - arctann) 

+ AJ(l : n2) 
sin (or + cp - arctan n) 

(10) 

Then, the solution is identical with (6) pro- 
vided the product dn is replaced by Aala,. 
This fact, being a rather surprising case, reveals 
some interesting properties of the applied 
methods. The method of successive approxima- 
tions is shown to be equivalent to the assumption 
of a certain deformation of the variable coef- 
ficient pulsations. If a slight deformation of 
that kind is taken as a criterion for the correct 
solution, one can conclude that the method of 
successive approximations, applied within a 
certain range, enables us to obtain accurate 
results even for considerable variations of the 
coefficient (n % 1 in the solution from 3.1). 
Within other ranges the admissible level of 
the variable coefficient changes is very low 
(n < 1 in the solution from 3.1). 

Another view of the problem consists of 
taking a definite level of the changes in the 
variable coefficient in equation (2) as a correct- 
ness criterion, while the method of successive 
approximations is applied to solve the equation 

(2). 
In this case one can state that within some 

ranges only very small deformations of the 
pulsations of the variable coefficient are ad- 
mitted (n $ l), while within other ranges even 
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large deformations (n < 1) do not affect the 
solution accuracy. Generally, the possibility 
of the appearance of such phenomena is not 
taken into account whenever the described 
methods are applied. 

The solutions (6) and (10) determine the 
magnitude of the displacement of the mean 
level in relation to the gas mean temperature 
and they give two component harmonics of the 
sensing element temperature variations. When 
the method of successive approximations is 
applied some higher harmonics may appear 
similarly as it has been shown in [7]. So, 
in the n approximation the component har- 
monics appear at frequency equal to the 
fundamental one multiplied by n. Since only 
two harmonics appear in the solution (6), this 
solution being valid for variations of a(r), 
slightly deformed as compared with the sinu- 
soidal ones, one may conclude that the first two 
harmonics should be much greater than the 
remaining ones, and that, qualitatively the 
results of Gordov, Kaganov, Rozenshtok and 
this work overlap in the case considered. 

The essential feature of the solutions obtained 
consists in the property of linear dependence 
of all terms on the amplitude of the temperature 
pulsation. 

The magnitude of displacement of the mean 
temperature level of the sensing element in 
relation to the mean temperature of the gas 
depends on both the phase displacement cp and 
the parameter n. For cp = arctan n no displace- 
ment appears, but for cp = 0 and n + cc it 
proceeds to the maximum value fA As/a,, 
i.e. to -5-x product of the temperature variation 
amplitude and the heat-transfer coefficient rela- 
tive pulsation. This result is compatible with 
the conclusions of the work by Kaganov and 
Rozenshtok. An interesting, simple, but in 
no case evident result is that the amplitude of the 
temperature record first harmonic does not 
depend upon the heat-transfer coefficient varia- 
tions, being the same as for a thermometer 
put into a medium at constant heat-transfer 
coefficient equal to the variable coefficient 

mean value. As it results from the solutions for 
high values of n, the second harmonic amplitude 
amounts to ix product of both the first harmonic 
and the amplitude of heat-transfer coefficient 
relative variations. 

It is noteworthy that the phase displacements 
of both component harmonics are expressed 
very simply as a function of n depending 
additively on cp. It is worth noting that the 
solution for the second harmonic is probably 
more inaccurate than for the first because the 
influence of the distortion of the heat-transfer 
coefficient variations and second order elements 
may be stronger for this harmonic. 

For a more detailed representation of ob- 
tained results, Figs. 2-5 show the mean level 
displacement, first and second harmonic ampli- 
tudes and the phase displacement plotted 
against n and cpl As a matter of particular 
interest one may point out that the relative 
maximum of the temperature record second 

RG. 2. Displacement of the thermometer temperature mean 
level related to the mean temperature of gas. 

1. cp=o 
2. fp = 90” 
3. Maximum displacement. 

FIG. 3. Amplitude of the first harmonic of the thermometer 
temperature variations. 
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harmonic appears for small thermal inertia where 
of the thermometer, i.e. for n z 0.7. The maxi- 
mum displacement of the mean level plotted 

1 is the sensing element length, 

against n is also noteworthy. When assessing 
k being the thermal diffusivity. 

In connection with this time value one may 
distinguish between two limiting cases for 
which the 

1 simple: 

estimation of the effect of the sup- 
ports on the measurement results is relatively 

I I 1 I Ill,, I I ,11l,,,_ w 
0.1 0.2 0.3 0.5 0.70. I 2 3 4 5 67S91cJ “‘0 1. 

FIG. 4. Amplitude of the second harmonic of thermometer 
temperature variations. 

4 

2. 

FIG. 5. Phase displacement of the first and second harmonics 
of the thermometer temperature variations for cp = 0”. 
To obtain phase displacements for other angles cp the curves 

must be shifted in parallel through the angle cp. 

the obtained results generally, one must state 
that the heat-transfer coefficient variations 
involve a considerable distortion of the sensing 
element temperature variation in relation to 
the ambient temperature over a wide range of 
the conditions of measurement. 

The solution of the equation (1) for the first 
case and for the boundary conditions given 
beneath : 

.4. ESTIMATION OF THE EFFECT OF THE 

SENSING ELEMENT SUPPORTING ELECTRODES 
ON THE MEASUREMENT RESULTS 

After a discussion of the physical side of 
the problem one may conclude that a variation 
of the heat-transfer coefficient should involve 
a change of the temperature distribution along 
the sensing element. These variations are charac- 
terized by the following characteristic time : 

l2 
z1 =- 

k 
(11) 

Whenever the characteristic time of thermal 
diffusivity along the span due to the thermal 
conduction is much shorter than the shortest 
lapse of time appearing in the heat-transfer 
coefficient pulsation, the variations are quasi- 
static and the temperature distribution cor- 
responding to one value of the heat-transfer 
coefficient passes through several steady 
states until it corresponds to the heat- 
transfer coefficient’s other value. 
As the characteristic time is much greater 
than the longest lapse of time encountered 
in the observed variations of the heat- 
transfer coefficient, those variations cannot 
influence the temperature distribution, so 
that the effect of the supports may be de- 
termined similarly as for the case of a 
constant heat-transfer coefficient equal to its 
mean value within a defined period. 

at,_, 
ax - for x = 0 

and 

t, = t, for x = 1 

will be as follows : 

t X1 

I 
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where, 

L(r)9 temperature of a cylindrical sensing 
element of infinite length ; 
radius of sensing element; 
sensing element half length ; 
temperature of supports ; 
heat-transfer coefficient ; 
thermal conductivity. 

Then, the maximum measuring error due to the 
effect of supports in accordance with the 
relation 

t, - l/1 i t(x) dx 

5= 
0 

t 
(13) 

.* 

will be 

(14) 

hence, for often encountered conditions : 

Cl(Z) = y[1 J(gy)]-I. (15) 

The solution of the equation (1) for the 
second case and for the boundary conditions: 

and 

at, o 
-= 

ax 
for x = 0 

t, = 0 for x = 1 

for the ambient temperature harmonic varia- 
tions expressed as t,, = A e*& will be : 

coshx 

coshl 
. (16) 

The measuring error due to the effect of the 
supports defined in accordance with the relation 
(13) will be approximately : 

c2 = (1 [,/(~cx,,,/RA)] (1 + ~2r;,,J*}-1 (17) 

where : 

rOm is the time constant of the sensing element 
for the mean value of the heat-transfer coefficient. 
In the foregoing consideration the errors due 
to a difference between the sensing element 
mean temperatures and those of the supports 
have been neglected. Those errors can be 
evaluated using the relation (15). 

However, in many cases some difficulties 
arise because neither the condition (1) nor (2) 
can be met. In such cases the transition from 
one state of the sensing element temperatures 
to another would occur in a rather complex 
manner with the generation of a kind of thermal 
wave which would propagate along the length of 
the sensing element and would influence contin- 
uously the effect of the supports on the measure- 
ment result. 

To determine this influence it is necessary 
to solve the equation (1) without simplifying it. 
However, as it has been mentioned, such a 
solution is very complicated Nevertheless, both 
the highest and lowest value of this error can 
be estimated The probable error will be 
approximately equal to the arithmetic mean of 
those values. 

Intuitively* it seems quite evident that the 
minimum effect of the supports would appear 
in the case in which the assumed heat-transfer 
coefficient would be constant and equal to 
the maximum value within the whole cycle, and, 
conversely, that the maximum effect would 
appear at the minimum value of the heat- 
transfer coefficient. 

In accordance with the relation (17) one may 
write for this particular’ case the following 

* Despite relatively considerable progress in the theory 
of parabolic differential inequalities [8, 91 a corresponding 
mathematical proof is still lacking. 
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expression : 

1 

+ (Jamin) (l + W2Zknin)* 1 (18) 
where the subscripts min and max denote 
respectively the minimum and maximum values 
of the particular parameters. 

5. CONCLUSIONS 

The foregoing analysis proves that the mean 
temperature of the sensing element in the 
case of a variable heat-transfer coefficient is 
displaced in relation to the mean tempera- 
ture of the medium. The highest value of this 
displacement equals one half the amplitude 
of the gas temperature variations multiplied 
by the amplitude of the relative pulsations 
of the heat-transfer coefficient. Although 
the maximum displacement appears for high 
values of the thermometer thermal inertia, 
this displacement is also substantial for 
thermometers showing small thermal inertia. 
The variations of the gas temperatures as 
recorded by the thermometer are subject to 
great deformations. Whenever sinusoidal 
variations are measured, higher harmonics 
appear, among which the second harmonic is 
particularly important. The first harmonic 
amplitude does not depend on the heat- 
transfer coeficient variations, being the same 
as for a thermometer put into a medium 
having the constant heat-transfer coefficient 

3. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

equal to the variable coefficient mean value. 
For thermometers showing a significant 
thermal inertia the second harmonic ampli- 
tude amounts approximately to ix product 
of both the first harmonic amplitude and 
the amplitude of the relative variations of 
the heat-transfer coefficient. 
For the majority of cases the error due to 
the effect of the supports for a variable heat- 
transfer coefficient is identical with that 
appearing in a case of a constant heat-transfer 
coeffkient equal to the mean value of the 
variable coefficient. 
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R-Pour un thermom&tre fin n’ayant aucun gradient de temfirature radial mais pos&dant une 
certain inertie thermique, le dbplacement de la temp&ature moyenne en relation aver la temp&ature 
moyenne du gaz est determint en meme temps que le fondamental et les harmoniques sup&rieurs de 
I’enregistrement de la temperature. dans le cas oti la tempkature mesurCe et le coeficient de transport 
de chaleur varient tous les deux p&iodiquement B la mime frtquence et avec diffkrents dCplacements de 

phase. L’effet de la conduction thermique le long du thermomttre est pris en consid&ation. 

Zmumm&m--Ftir ein diinnes Thermometer ohne radialen Temperaturgradienten aber mit einer 
gewissen thermischen Triigheit wird die Abweichung der mittleren Temperatur in Abhiingigkeit von der 
mittleren Gastemperatur bestimmt zusammen mit den fundamentalen und haheren harmonischen 
Temperaturschwankungen fiir den Fall, dass sich sowohl die gemessene Temperatur als such der W&me- 
iibergangskoefflient bei gleicher Frequenz und verschiedener Phasenabweichung periodisch %ndert. Der 

Einfluss der Wllrmeleitung im Thermometer wird berticksichtigt. 
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Ammaqun-&m TOHKO~O Tepnromerpa, Ke KnaeIowero p~na;nbeoro TemepaTypKoro 

rpmnema, HO Hlvemnlero onpenenemym TenJroBylo waepqmo, cnaelrleme cpegaefi Terne- 
patypbt, omecmmoft K cpemieft TewnepaType raaa onpe~eaflemi meme c noKaaamuimsf 
Tepmomwpa H ~bmunmi rap8fomKam B cnysae, KorRa o6e Haatepemne TemepaTypH a 
KO+j&iqHeHT TenJIOOdMeHa H8HeHRlOTCK IIepHOJWleCKK C O~i¶HaKOBOii 'laCTOTOii, HO C 

pa8aKWiHHH CnBHraMH @aa. TaKme paCCMOTpeH elft+eKT TenJlOIlpOnO~HOCTK BnOJlb 

TepMOMeTpa. 


